博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
(转) AdversarialNetsPapers
阅读量:6848 次
发布时间:2019-06-26

本文共 4480 字,大约阅读时间需要 14 分钟。

 

 
本文转自:https://github.com/zhangqianhui/AdversarialNetsPapers

AdversarialNetsPapers

The classical Papers about adversarial nets

The First paper

 [Generative Adversarial Nets]  (the first paper about it)

Unclassified

 [Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks] 

 [Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks] (Gan with convolutional networks)

 [Adversarial Autoencoders] 

 [Generating images with recurrent adversarial networks] 

 [Generative Visual Manipulation on the Natural Image Manifold] 

 [Neural Photo Editing with Introspective Adversarial Networks] 

 [Generative Adversarial Text to Image Synthesis] 

 [Learning What and Where to Draw] 

 [Adversarial Training for Sketch Retrieval] 

 [Generative Image Modeling using Style and Structure Adversarial Networks] 

 [Generative Adversarial Networks as Variational Training of Energy Based Models] (ICLR 2017)

 [Towards Principled Methods for Training Generative Adversarial Networks] (ICLR 2017)

 [Adversarial Training Methods for Semi-Supervised Text Classification] ( Ian Goodfellow Paper)

 [Learning from Simulated and Unsupervised Images through Adversarial Training] (Apple paper)

 [Synthesizing the preferred inputs for neurons in neural networks via deep generator networks] 

 [SalGAN: Visual Saliency Prediction with Generative Adversarial Networks] 

Image Inpainting

 [Semantic Image Inpainting with Perceptual and Contextual Losses] 

 [Context Encoders: Feature Learning by Inpainting] 

Super-Resolution

 [Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network] (Using Deep residual network)

Disocclusion

 [Robust LSTM-Autoencoders for Face De-Occlusion in the Wild] 

Semantic Segmentation

 [Semantic Segmentation using Adversarial Networks] (soumith's paper)

Object Detection

 [Perceptual generative adversarial networks for small object detection] [[Paper]](Submitted)

RNN

 [C-RNN-GAN: Continuous recurrent neural networks with adversarial training] 

Conditional adversarial

 [Conditional Generative Adversarial Nets] 

 [InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets] 

 [Image-to-image translation using conditional adversarial nets] 

 [Conditional Image Synthesis With Auxiliary Classifier GANs] (GoogleBrain ICLR 2017)

 [Pixel-Level Domain Transfer] 

 [Invertible Conditional GANs for image editing] 

 [Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space] 

 [StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks] 

Video Prediction

 [Deep multi-scale video prediction beyond mean square error] (Yann LeCun's paper)

 [Unsupervised Learning for Physical Interaction through Video Prediction] (Ian Goodfellow's paper)

 [Generating Videos with Scene Dynamics] 

Texture Synthesis && style transfer

 [Precomputed real-time texture synthesis with markovian generative adversarial networks] (ECCV 2016)

GAN Theory

 [Energy-based generative adversarial network] (Lecun paper)

 [Improved Techniques for Training GANs] (Goodfellow's paper)

 [Mode RegularizedGenerative Adversarial Networks] (Yoshua Bengio , ICLR 2017)

 [Improving Generative Adversarial Networks with Denoising Feature Matching] (Yoshua Bengio , ICLR 2017)

 [Sampling Generative Networks] 

 [Mode Regularized Generative Adversarial Networkss] ( Yoshua Bengio's paper)

 [How to train Gans] 

3D

 [Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling] (2016 NIPS)

Face Generative

 [Autoencoding beyond pixels using a learned similarity metric] 

 [Coupled Generative Adversarial Networks] (NIPS)

Adversarial Examples

 [Intriguing properties of neural networks] 

 [Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images] 

 [Explaining and Harnessing Adversarial Examples] 

 [Adversarial examples in the physical world] 

 [Universal adversarial perturbations ] 

 [Robustness of classifiers: from adversarial to random noise ] 

 [DeepFool: a simple and accurate method to fool deep neural networks] 

 [2]  (NIPS Goodfellow Slides)

Project

 [cleverhans] (A library for benchmarking vulnerability to adversarial examples)

 [reset-cppn-gan-tensorflow] (Using Residual Generative Adversarial Networks and Variational Auto-encoder techniques to produce high resolution images)

 [HyperGAN] (Open source GAN focused on scale and usability)

Blogs

 [1] 

 [2] 

Other

 [1]  (NIPS Goodfellow Slides)

 [2] (NIPS Lecun Slides)

 

转载地址:http://zhlul.baihongyu.com/

你可能感兴趣的文章
ASP.NET Core 中使用 GrayLog 记录日志
查看>>
RabbitMQ的几种工作模式
查看>>
关于Java类加载双亲委派机制的思考(附一道面试题)
查看>>
java中关于volatile的理解疑问?
查看>>
SQL Server Management Studio(SSMS)的使用与配置整理
查看>>
Activit工作流学习例子
查看>>
安装了宝塔面板的服务器,一键部署私有云
查看>>
干货!14个最新优质加载动画设计,让等待成为一种享受
查看>>
Android listview与adapter用法
查看>>
Android开发之再探底部菜单TabLayout与Bottom navigation实现方式
查看>>
传瑞幸咖啡获新一轮融资,投前估值达20亿美元
查看>>
惠普集团放弃Salesforce 采用微软的云端CRM
查看>>
《DBA修炼之道:数据库管理员的第一本书》——第3章附加问题
查看>>
爱尔兰不得不接受苹果130亿欧元税款 都是欧盟逼的
查看>>
《DBA修炼之道:数据库管理员的第一本书》——3.4节概念、逻辑和物理数据模型...
查看>>
顶级智囊支招 丰泽智慧城市建设
查看>>
移动安全成头号威胁,中国NFC安全技术有望抢占国际标准制高点
查看>>
Google 宣布新开源压缩算法 Brotli
查看>>
PostgreSQL 10 GIN索引 锁优化
查看>>
《AngularJS深度剖析与最佳实践》一1.7 实战小结
查看>>